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I. INTRODUCTION 

A. Historical Information 

The development of computers had, by the middle 1950's 

reached the state where large scale general-purpose elec­

tronic digital computers were an actuality. The need for 

large storage capacity was met by three devices: delay lines, 

magnetic drums, and electrostatic storage tubes. All three 

of these devices were used in commercial machines. See 

Richards (21) for a detailed comparison of the advantages and 

disadvantages of each. 

In electrostatic storage there were four types of tubes 

that were developed. All of these tubes stored information 

in a pattern on an insulator. These tubes were referred to 

as the Williams tube, the Selectron, the holding-gun tube and 

the barrier-grid tube. These were developed from the already 

established cathode ray tube technology that had been developed 

for television and oscilloscope applications. The Williams 

tube consists of a cathode ray tube, a pickup plate, an 

amplifier, logic circuits, and deflection and grid control 

circuits. It stored on the order of 1000 bits per tube. 

The cycle time was approximately 8 microseconds per bit. 

With this tube the information had to be regenerated 

periodically because the insulating material, on the back 

side of the face of the tube,was imperfect and this caused 
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the charge pattern to be destroyed. Typically, every third 

cycle was set aside for regeneration and the computer did 

not have access to the storage system during this time. The 

cathode ray tubes had to be modified to obtain a very small 

beam diameter at all points on the storage surface and for 

the elimination of blemishes on the storage surface. To 

minimize the beam diameter the distance between the electron 

gun and the storage surface was reduced but then deflection 

defocusing became a troublesome phenomena. Also, the small 

beam diameter limited the beam current density. 

The barrier-grid storage tube differed from the Williams 

tube only in that the pickup plate was in physical contact 

with the electrostatic storage surface (hence, it is called 

a back plate) and there were two screens in front of the 

storage surface. The one nearest the storage surface is 

called the barrier grid and it is at ground potential. The 

other one is referred to as the collector grid and it is at 

a positive potential of typically 250 volts. This tube could 

store approximately 10,000 bits. Only after interrogating a 

single bit 100 times did the adjacent bits need to be re­

generated. These two factors were great inçrovements over 

the Williams tubes. The disadvantage of increased manu­

facturing costs made them attractive only in large quantities. 

The holding gun tube was developed to eliminate the 

need for regeneration. This differed from the Williams tube 
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by having a back plate, a collector grid at ground potential, 

and a holding gun with its cathode at some negative potential. 

The storage capacity and the access time properties are about 

the same as for the Williams tube. This tube and the 

barrier-grid tube use a group of cells to store a single bit 

of information. This provides a large output signal upon 

interrogation and aids the compromise between beam diameter, 

deflection defocusing and beam current density. Since the 

storage regeneration process has been eliminated, the de­

flection systems now required long-term stability as well 

as short-term stability. 

The Selectron was in many respects just like the holding 

gun tube except that each cell had, in effect, its own electron 

gun and the method of interrogation was different. This tube 

compares quite favorably with the other forms of electro­

static storage but when these are compared with magnetic 

core storage, the cores are preferred. All the electrostatic 

storage forms have the disadvantage that I's are read out 

destructively. In all of these tubes the reading, writing, 

and sensing of information relies on some sophisticated 

pulsing techniques of the electron guns and backing plates. 

Delay line storage (mercury, quartz, magnetostrictive-

and lumped-constant and distribution-constant), capacitor 

storage, ferroelectric storage and spinecho storage have 

never been used very extensively for large capacity storage. 
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Although, for special-purpose application and for small 

computers not requiring fast access speeds they have been 

retained. 

The present state of the art for other memories is 

compared in Table 1. This information was extracted from 

Kosmala, Green and Martin (14). It is evident that beam 

accessible memories are still the only way of achieving 

large capacity memories. 

B. Statement of the Problem 

If a new type large capacity high density memory is to 

be developed, then some new techniques and/or materials must 

be found. The major problem with many memories is that the 

number of wires needed becomes unmanageable. For small com­

puters the wires problem is tolerated but for large capacity 

systems the computer industry has been devoting monies to the 

development of methods that eliminate this problem. For 

example, the use of laser beams for interrogating a memory 

cell requires only the laser power supply leads, the x-y 

deflection leads, and the light collector output leads. 

Which is only 9 leadsi Electron beams and lasers are the 

only methods for use to date that allow the sensing to be 

accomplished at high speeds. Other systems have large in­

ertia and do not permit totally random access. Magnetic 

drums and tapes are prime examples. 
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Table 1. Capacity of computer memories 

Memory Material Packing Density 

Ferrite Cores 1000-3000 bits/sq. in. 
If requirements for very high 
speed were reduced then densi­
ties in excess of 50,000 bits/ 
cu. in. should be realized 

Planar Ferrite or laminated 
ferrites 

2000-4000 bits/sq. in. 

Planar Thin Film 
a) Split film 
b) Mated film 
c) Coupled film 
d) Post-and-film 

Plated Wire 

Serial, block oriented 
magnetic sonically 
scanned 

800 bits/sq. in. 
200 bits/sq. in. 
104 bits/sq. in. 
2000 bits/sq. in. 

500-1000 bits/sq. in. 

lO'^ bits/cu. in. 

Semiconductor - MNOS 
metal-nitride-oxide-
semiconductor 

10 bits/cu. in. 

Beam Accessed 
a) Photographic (silver 

halide) 
b) Vaporization (Bi) 
c) Photochromic (SrTiO^) 
d) Ferroelectric (LiNbOg) 
e) Magnetooptic Curie 

point (MnBi) 
f) Thermoplastic 
g) Photoconductive 

>10 bits/sq. in. 
6x10® bits/sq. in. 
>109 bits/sq. in. 
1.5x10^ bits/sq. in. 

>6x10® bits/sq. in. 
not available 
not available 

Cryogenic >10 bits/sq. in. 
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Long-terra and short-term stability are two problems that 

require a controlled environment to minimize data losses. 

For the magnetic devices temperature, humidity, and stray 

electromagnetic fields must be properly controlled. The 

electronics for the deflection systems as well as the de­

flecting media for lasers are highly temperature sensitive. 

If, for example, an electron beam was deflected over a 5 inch 

screen by using 500 volts, then the voltage change required 

to move the beam would be 3.95 millivolts/micron. If the 

memory cells are located on 5 micron centers which leads to 

6 2 a 2.5x10 bits/cm density and if information is lost by 

beam displacement of 1.5 microns or 5.925 millivolts, then the 

acceptable drift of the power supply would be limited to at 

most 12 parts in a million. If the other direction is included 

(both X and y drift), then the limit would be down to 8 parts 

in a million. Consequently, the deflection power supplies 

would have to be very highly regulated. A common technique 

to enhance the reliability is to provide redundancy by using 

several cells to record a bit. The problems of stability and 

reliability are standard for large capacity memories and re­

quire no further discussion. 

The decision then is to use an electron beam accessed 

memory. The fundamental principle to be employed in this 

memory is the bistable resistivity phenomena that occurs in 

nonoxide IVA-VA-VIA chalcogenide glasses. This material meets 
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the memory criteria: 

1. The memory elements must have two stable states. 

2. These states must be easily and quickly switchable, 

3 - They must be switchable by an electric field or by 

heating because these are the two primary effects 

that an electron beam produces when interacting 

with matter. 

4- These states must exhibit some change that can be 

sensed with an electron beam. 

Both Sie (26) and Uttecht, Stevenson, Sie, Griener, and 

Raghavan (29) have demonstrated the memory bistable re­

sistivity of As-Te-Ge. This provides evidence for the satis­

faction of the first three memory criteria. The only condi­

tion left to be satisfied is the fourth one of electron beam 

sensing. 

To sense with an electron beam it is desirable to find 

a material that has a large secondary electron emission change 

for a given electron beam energy when switching from one state 

to the other. This notion has served as a primary motiva­

tion for the work in this thesis. 

C. Method of Attack 

The As-Te-Ge chalcogenide glass was selected from the non-

oxide IVA-VA-VIA chalcogenide glasses because of the avail­

ability of information about its physical properties. The 
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ternary system of As-Te-Ge is shown in Figure 1 which was 

reported by Hilton, Jones and Brau (11) and Krebs and 

Fischer (15). Also this system provides two glass regions 

that exhibit different switching phenomena. The glass is­

land in the lower left hand corner of Figure 1 is used to 

make threshold switching devices. The other glass region is 

used to make memory switching devices. 

The difference between the two types of devices is that 

the threshold device will only remain switched as long as 

there is enough voltage and current applied so that the conduct­

ing filament state can be maintained. The memory device dif­

fers because it will remain in a state until there is some 

impetus applied to cause a change of state. 

This glass system abounds with information about most 

of its physical properties (11, 12, 15, 22, 26, 29, 30, 31). 

As a consequence, the main effort of the work is directed 

towards measuring the secondary electron characteristics and 

not in measuring the resistivities, densities, thermal ex­

pansion coefficients, glass transition temperatures, etc. 

There are numerous different ways that the secondary 

electron characteristics can be measured. The advantages and 

disadvantages of each is described by Whetten (32). The 

method that was chosen to make these measurements is the two 

electron gun technique that was developed by Handel, Jensen, 

and Siedband (10). This technique provides a steady state 
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Ge IV A 

Figure 1. The As-Te-Ge phase diagram in atomic percentage 
(after Hilton) 
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measurement of the secondary electron emission characteristics. 

Figure 2 shows the current relationship that exists at 

the target- The reflected current consists of true secondaries, 

elastically scattered primaries, inelastically scattered pri­

maries, Auger electrons etc. For current balance at the target 

the following relationship must be satisfied : 

I — I + I primary reflected transmitted 

Dividing this equation by Ip^imary moving the third term 

to left side of the equation igives 

^reflected _ ^ ^transmitted 
I I primary primary 

But the secondary emission ratio is defined as 

r ^reflected = Ï—: • 
primary 

It follows then that 

I r , transmitted 
6  =  1 -  J  -

primary 

In order to measure 6 the primary and the transmitted currents 

need to be measured. These can be measured quite handily by 

this technique as compared to the relatively difficult pulsing 

techniques. Figure 3 is a schematic of the secondary electron 

emission analyzer. A full description of the operation of this 

analyzer is deferred until a later section. 
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Target 
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1 
I . primary 

£ 
Target Support 
and Electrode 

"transmitted 

Collector mesh 

I = I + I 
primary reflected transmitted 

Figure 2. Current relationship at the target 
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The salient features of the technique are that the flood 

gun holds the surface of the target at a constant potential 

while the probe gun is modulated by a 1 kHz source. The 

transmitted current consists of a dc current plus an ac 

current. The ac current is amplified, run through a band­

pass filter, and then the signal is measured with an oscillo­

scope. To measure the primary current the target is simply 

replaced by a Faraday Cage. 
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II. LITERATURE REVIEW 

In 1902 Austin and Starke discovered the phenomenon 

of secondary electron emission. They were studying the re­

flection of cathode rays from metallic surfaces when they 

found that the metal surfaces were emitting more electrons than 

they were receiving. If it had been pure reflection, then the 

number incident would have been equal to the number reflected 

but this was not the case. Consequently, it provided positive 

proof of the liberation of electrons from the material itself. 

When electrically charged particles of sufficient kinetic 

energy strike a material, the material will emit electrons. 

The incident particles can be electrons, ions, protons, etc. 

Only incident electrons will be considered and these will be 

called the primary electrons. When these primary electrons 

bombard a material, the electrons are slowed down through 

energy losses due to the interactions with the atomic forces 

of the material. Some of this energy will produce excitation 

of electrons in the material. These electrons will diffuse 

throughout the material and if they reach the surface, they 

may escape through the surface barrier. These electrons 

are referred to as the secondary electrons. For thin slabs 

secondary electrons will be emitted from both surfaces but 

the ones that are normally considered are the ones that 

emerge from the side being bombarded by the primary electrons. 

Figure 4 shows the relationships between the primary, secondary 
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Entrance Exit 
side side 

Elastic 
Scattering 

Transmitted 
electrons 

Inelastic 
scattering Primary 

electrons' Energy 
loss 

Secondary 
electrons 

Diffused 
electrons 

Total 
Absorption 

Figure 4. Origin of secondary electrons 
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and transmitted electrons. 

Interaction within the slab does not necessitate the re­

lease of electrons. The electrons emerging from the entrance 

side will consist of inelastically scattered primaries, elas-

tically scattered primaries. Auger electrons, true secondaries, 

and other competing processes of energy absorption leading 

directly or indirectly to excited electrons. An energy spec­

trum of the emitted electrons is shown in Figure 5 from Rud-

berg (23). The peaks in the spectrum are distinguishable and 

are termed: 

a. Elastically reflected primaries 

b. Inelastically reflected primaries 

c. "True" secondaries 

The broad peak (c) contains the majority of the emitted elec­

trons. The energy distribution of these slow electrons is 

practically independent of the primary electron energy. Con­

sequently, these electrons are referred to as the true 

secondaries. On the other hand, it is impossible to separate 

the true secondaries from the inelastically scattered primaries. 

Arbitrarily, the term "true" secondaries refers to all those 

electrons below an energy of 50 eV. 

Experimentally, it is easier to measure the total number 

of reflected electrons and in most applications the gross ef­

fect is utilized. In the literature the 6 described refers 

to the ratio of the total emitted secondary electron current 
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150 100 50 

Secondary Electron Energy (eV) 

Figure 5. Distribution in energy of secondary electrons 
from gold for a primary electron energy of 155 
eV (after Rudberg) 
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to the primary electron current-

There have been a number of theoretical treatments of the 

phenomenon of secondary electron emission (3, 1, 8, 25). As 

yet, however, it is impossible to predict in detail the second­

ary emission characteristics of a material from its fundamantal 

properties. 

The yield of a material is dependent on the energy of the 

primary electrons, the angle of incidence of the primaries 

with respect to the surface, the properties of the surface being 

bombarded, and the properties of the bulk material. The surface 

conditions highly affect the number of secondary electrons. 

Therefore, its past history must be well-known in order to make 

the results meaningful. 

Measuring 6 for metals is much easier than it is for in­

sulators. Insulators are difficult because surface charge 

accumulations affect the measurements. The insulators will 

remain at the same potential only when 6=1. In order to 

make any measurements of 6, the charging of the surface must 

either be eliminated or at least minimized. 

The heating of some insulators will increase the conduc­

tivity sufficiently so that there will not be much charge 

accumulation. The problem with this technique is that 6 is 

temperature dependent due to increased scattering between 

electrons and lattice vibrations as shown by Dekker (7). 

Pulse methods are used to keep the charge accumulation 
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small and are the most versatile methods developed to date. 

These methods reduce charging by reducing the number of inci­

dent electrons. After a pulse the surface potential is re­

established by one of the following: 

1. If the insulator is a thin film on a conducting 

substrate, electrical leakage or breakdown 

through the insulator, thereby, keeping the surface 

potential near the substrate potential. 

2. Heating of the insulator but allowing adequate 

cooling time. 

3. Flooding the surface with low-energy electrons 

and causing the surface to be at the potential 

of the filament. 

4. Using secondary electron emission to re­

establish the surface potential. 

Each method has a few good and bad qualities so the experi­

ment will have to dictate the choice. Method 2 appears to be 

the best but is extremely time-consuming. 

There are two standard ways to measure 5. They both in­

volve using a target located in the center of a spherical 

collector and a grid spaced slightly inside the collector. 

The collector geometry and collector potential is such that 

it collects all of the electrons coming from the target. The 

grid is used to repel the secondaries liberated from the col­

lector due to the collecting of electrons from the target. 
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In method 1 the collector current is measured and the 

target current is measured. The sum of these two is the pri­

mary current. Method 2 uses the target circuit to make both 

measurements. After the target current is measured the col­

lector is made negative to repel the target emitted electrons 

so that they are all recollected by the target. The only 

problem here is that if there are any target emitted electrons 

of sufficient energy to reach the collector, then this com­

ponent will not be measured. Also, the secondaries from the 

collector due to this current will be accelerated to the target 

and give a false addition to the primary current. The ad­

vantage of this method is that the target circuitry is used 

for both measurements. This means that the input capacity 

to the preamplifier is the same in both measurements. 5 

is the ratio of two currents so the amplifier need not be 

calibrated in terms of current to the amplifier. For a more 

detailed discussion of these techniques see Whetten (32). 

Three papers (4, 17, 18) have been published on the 

measured secondary emission characteristics of nonoxide IV-V-

VI chalcogenide glasses. All three used pulse techniques 

similar to those already discussed. Makedonskii and Pustovoit 

(17) and Makedonskiy (18) dealt strictly with binary composi­

tions and did not with one exception make a comparison of the 

characteristics for sample compositions prepared in both the 

amorphous and the crystalline state. Consequently, their re-
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suits were not very exciting. 

The work of Chen, Norton and Wang (5) did present re­

sults for two samples of As-Te-Ge in the amorphous and the 

crystalline phases. They also presented data for one composi­

tion as a function of annealing temperatures between 23°C and 

520°C. For the composition Ge^ 8^^17 2'^®78 °max 1.95 

for the amorphous state versus 1.20 for the crystalline state. 

This looks very promising. 
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III. EXPERIMENTAL 

A. Secondary Electron Emission Analyzer 

The secondary electron emission analyzer is patterned 

after the method developed by Handel et al. (10). The sche­

matic for this analyzer is shown in Figure 6. This method 

uses two electron guns and these are denoted the probe gun 

and the flood gun. The flood gun is used to hold the front 

surface of the target at a fixed potential. The probe gun 

is used to interrogate the surface. The collimating lens mixes 

the two beams and bends the flood gun beam since the flood gun 

is located off axis. The transmitted signal is amplified, 

run through a bandpass filter and then monitored with an oscil­

loscope and an rms voltmeter. 

The secondary emission coefficient ô is measured in the 

following way. The charge balance equation for the currents 

at the target is: 

T — T + T 
primary secondary transmitted 

Dividing this equation by ^primary rearranging: 

. , ^transmitted 6  =  1 -  —  .  

primary 

Note, that this is the gross effect secondary emission 

coefficient. If the primary and the transmitted currents 

are measured, then it is easy to compute 6. 

Figures 7 and 8 are pictures of the analyzer. The 
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Figure 6. Schematic of the secondary electron emission analyzer 
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Figure 7. Target support plate, target holders and the 
Faraday Cage of the secondary electron emission 
analyzer 
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- Figure 8. The probe gun, the flood gun, the collimating 
lens, and support structure for the secondary 
electron emission analyzer 
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analyzer was constructed in the following manner. The four 

guide rails were made of aluminum 3/4" x 3/4" x 17". The 

two end support plates were fashioned from aluminum 6" x 6" x 

3/8". The gun and collimating lens were fashioned out of 

aluminum and plexiglas. The target support plate guides were 

also fashioned from aluminum. The target support plate guides 

were made of nylon and the plate itself was fabricated from 

inconel. The target holders and the Faraday Cage holder and 

positioner were made from plexiglas. The Faraday Cage and 

the collimating lens were constructed of stainless steel. 

Picture hanging cable was used to raise and lower the target 

support plate. The materials were selected on the basis of 

being nonmagnetic, nonreactive, good insulators (if need be), 

of good vacuum characteristics, and easily machinable (except 

inconel). . 

The probe gun was an old World War II vintage 5BP1 cathode 

ray tube. The vacuum was released in the tube and then the 

tube was severed at the deflection plates. The probe gun 

deflection system was operated in parallel with a Dumont 341 

oscilloscope. This permitted a constant check on the beam 

position. A high voltage power supply was utilized to obtain 

voltages between 0 and 4600 volts. 

The flood gun was constructed by modifying a 5FP7 cathode 

ray tube. This consisted of removing the gun from the glass 

envelope and then cutting off everything above the cathode. 
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The cathode and filament were tied together. The filament 

voltage was provided by a dc supply and the cathode potential 

was provided by a tap from the voltage network used for the 

collimating lens. 

The collimating lens consists of three stainless steel 

sections. The first one was constructed with a truncated cone 

and a right circular cylinder. The probe gun aperture was a 

one-half inch opening located on axis at the center of the 

truncated cone. The flood gun aperture was made by cutting 

away part of the right circular cylinder and the truncated 

cone and was located approximately 15° off axis. The second 

section was a right circular cylinder and the third was too, 

except that a 50 mesh stainless steel screen was welded to the 

face nearest the target. A voltage divider network was used 

for the lens with the third section at 390 volts, the second 

at 260 volts, and the first at 130 volts. 

A phosphor screen was located on the target support plate 

and was used to locate the beam and to study its shape and 

intensity. The phosphor screen was made in the following 

manner. A plate of glass was cleaned in a 10% solution of 

hydrofluoric acid arid then rinsed with distilled water. After 

drying, the plate was coated with a weak phosphoric acid solu­

tion and carefully sprayed with zinc sulfide, an electronic 

phosphor. It was then placed in an oven, heated to 400°C, the 

oven turned off, and then extracted the next day. This method 
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provided a very durable screen. This screen was later removed 

so that two samples could be analyzed. 

The Faraday Cage consists of a 3/4" x 3/4" x 1" stain­

less steel box with a 1" x 1" x 1/2" snout on it. The in­

side was coated with soot from an enriched acetylene flame-

This was done to decrease the number of secondary electrons 

emitted during the collecting process. ^^ax soot is a 

low 0.45 and this occurs at an incident electron energy of 

500 volts (32). The orifice of the Faraday Cage was equal in 

size to that exposed by the targets. Hence, the beam imping­

ing on the targets was identical to that entering the Faraday 

Cage. 

The analyzer is located in a stainless steel bell jar 

that is 18 inches in diameter and 24 inches tall. High vacuum 

feedthroughs are used for all connections and in the case of 

the collimating lens and the probe gun heater leads, the feed­

throughs are high voltage, as well. The system is pumped by 

a 6 inch diffusion pump using DC-704 oil. This equipment is 

shown in Figure 9. 

The signals produced by the samples and the Faraday Cage 

are fed through 50 ohm coaxial cables. The signals are ampli­

fied and run through a bandpass filter. The amplifier is 

a modification of the circuit from Miller (19) and the band­

pass filter is a Krohn-Hite Model 3100. The output is monitored 

on a Tektronix 561A dual beam oscilloscope and a Ballantine 
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Figure 9. The vacuum and electrical equipment for the 
secondary electron emission analyzer 
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Model 300 electronic voltmeter. Modulation of a 250 x 10 

A probe beam current produces the output signal. A Hewlett 

Packard Model 200CD widerange oscillator and a Hewlett Packard 

Model 211A square wave generator are used to pulse amplitude 

modulate the probe beam. Another oscillator is used to swing 

the probe beam in a circular fashion on the targets. This, in 

effect, provides an infinite number of samples from one sample 

simply by changing the shape of the probe beam. The probe 

beam for the higher voltages is approximately 1 mm in 

diameter. 

The transmitted current and the primary current are 

easily measured. The target support plate is moved vertically 

and an optical alignment is used to correctly position the 

plate. Although/ this method is very time consuming, the beam 

distortion that occurs when bending the beam to deflect it to 

either the target or the Faraday Cage would produce ques­

tionable results. In particular, for low voltages, the dis­

tortion would be quite large. 

When insulators are analyzed, the flood gun cathode is 

clamped at zero volts. If the surface starts to charge 

positive, more electrons will be drawn from the flood gun. In 

the case of semiconductors, a potential difference due to an 

IR drop through the material, can cause errors in computing the 

primary electron energy and thus errors in S. This problem is 

alleviated by adjusting the flood gun cathode to a negative 
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potential relative to the grounded target electrode (ne­

glecting the IR drop across the amplifier input resistance). 

This will establish a surface potential close to that of the 

flood gun cathode. Also, the potential is held constant 

throughout the experiment. 

This technique is only good for measuring the char­

acteristics between first and second crossover. The reason 

is that since this is a steady state measurement there will 

be a net negative charge accumulation for 6 < 1 which will 

drastically affect the number and energy of the impinging 

probe beam. The surface potential would not be a constant 

during the measurement. 

The probe beam current should be a small perturbation, 

which means that the average current density of the probe 

beam must be much less than the flood beam. This can be 

accomplished by using a small probe beam current, by pulse 

amplitude modulating the probe beam, and by scanning the 

probe beam to keep the duty cycle small on a particular area 

of the target. 

B. Calibration Samples 

The calibration sample is selected on the basis that 

since glasses are to be analyzed the calibrator should be a 

similar but a well-known material. Quartz was selected and 

its characteristics were published by Salow (24) and Geyer (9). 
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The sample substrates are 30 mil thick 1-1/8" x 1-1/4" 

stainless steel plates that have a small tab silver soldered 

to the center of the back side. The surface is polished in 

the following steps: 

1. Hand polished with 240 grit silicon carbide paper 

2. Hand polished with 500 grit silicon carbide paper 

3. Hand polished with a nylon cloth and 1 micron 
sized alumina calcined powder in a slurry 

4. Hand polished with a nylon cloth and 0.05 micron 
sized alumina calcined powder in a slurry 

5. Hand polished with a microcloth and 0.05 micron 
sized alumina calcined powder in a paste 

After this polishing of about one and one-half hours per sub­

strate, the substrates are washed with distilled water, acetone 

and then alcohol. They are then placed in an ultrasonic clean­

er for one-half hour. The cleaner contained a solution of dis­

tilled water and a detergent. Finally, they are placed in an 

alcohol degreaser for 12 hours. In order to further the 

smoothing, a 1000 angstrom layer of chromium is deposited. 

The quartz is deposited by an rf sputtering technique. 

The film thickness is 5500 angstroms. This thickness is used 

because the electron beam would not be able to penetrate to 

the substrate and any thicker layer would have involved some 

complications with the deposition technique. 

The secondary electron emission characteristics for quartz 

are shown in Figure 10. The clean sample is a virgin sputtered 

film. The disagreement with Salow (24) for this clean sample 
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Figure 10. Secondary yield of quartz samples 
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is thought to be based upon the method of sample cleanliness. 

Salow's samples were prepared by acid etching and washing with 

distilled water. A "dirty" sample was prepared by etching 

with nitric acid and then hydrochloric acid, washing with 

isopropanol and distilled water. Much better agreement is 

obtained as shown in Figure 10. 

C. Chalcogenide Glass Samples 

The chalcogenide samples are made by weighing out the 

percentage atomic weight of each element- They are then mixed 

together in quartz ampules. A vacuum is drawn and then the 

tubes are sealed. Some of the ampules are placed in 304 

stainless steel cylinders and packed with carbon cloth to 

prevent breakage. The cylinders are sealed in a helium envi­

ronment. The stainless steel cylinders and the remaining 

quartz ampules are then placed in a rocking furnace and 

rocked for 24 hours after reaching the 980-1020°C temperature 

range. After removal from the furnace, part of the samples 

are plunged into water at room temperature and the rest are 

air cooled to room temperature. 

The sample substrates are prepared in the same identical 

manner that was used in the preparation of the substrates for 

the calibration samples. The chalcogenide glass is then de­

posited onto the substrates by electron beam evaporation. 

Figure 11 shows the arrangement for performing this deposition. 
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Figure 11. Electron beam evaporator for the deposition of chalcogenide glasses 
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The substrate holder is loaded with two stainless steel sub­

strates, ten circular cover glasses 22 mm in diameter, four 

silicon wafers 1" x 1" or less and one quartz crystal. The 

substrates are cleaned with a detergent soap and distilled 

water solution in an ultrasonic cleaner for 30 minutes follow­

ed by 12 hours in an alcohol degreaser. After placement into 

_5 the evaporator, the system is pulled down to at least 2 x 10 

mm and then a 200 watt heater is turned on for two hours. 

Then after a 24 hour cooling period, the deposition is per­

formed at a pressure of less than 5 x 10 ^ mm. 

The glass samples are switched by the following method. 

A 38 mm inside diameter pyrex tube is attached to a vacuum 

valve as shown in Figure 12. An aluminum boat is fabricated 

by machining a halved aluminum rod, anodizing it and then 

boiling it in water. The boat holds the targets, glass samples 

and bulk material. The tube is loaded and then pulled down 

with a mechanical pump. The tube is sealed off and then placed 

in a tube furnace that has been preheated to 440°C. The furnace 

is switched off such that the boat is heated to 350®C for 3 

minutes and then cooled at a 2°C per minute rate. After cool­

ing to 100®C the tube is reattached to the mechanical pump, 

the vacuum valve opened and left in this condition until the 

analyzer is ready to measure its characteristics. 

The composition is determined by microprobe analysis, the 

thickness by interferometer, and the resistivity ratio by a 
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Figure 12. Pyrex tube, loaded boat and vacuum valve used 
for switching the chalcogenide samples 
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four probe technique (16). These measurements are made on 

the glass substrates that accompanied each deposition and not 

on the stainless steel substrates. The four probe technique 

is used in the square-probe array. The sheet resistance is 

then found to be 

Rg = 9.05 V/I 

where 

R = sheet resistance s 

V = potential between two adjacent probes 

I = current flowing through the other two probes . 

Resistivity is then found by p = Rgd, where d is the film 

thickness. Probes with 5 mil diameter points are used and 

they have a tendency to poke a hole in the film. Extreme 

care must be used to prevent this. These results are also com­

pared to a two probe dc technique and found to be in agreement. 

Some of the films on both the glass and stainless steel sub­

strates were compared and found to be in agreement also. 

The sample compositions were selected on the basis of 

investigating the memory switching region. The vapor pressure 

difference of the three elements resulted in compositions that 

are somewhat different from the bulk material. This is dis­

cussed in more detail in the discussion section. 
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D. Results 

The microprobe analysis is presented in Table 2. The 

deposition 110 was analyzed to determine if the deposition 

method produced a uniform composition over the surface of the 

substrate holder. Four of the ten cover glasses were ran­

domly selected and analyzed. The results are well within the 

10% accuracy of the microprobe analyzer. The two glass samples 

that were switched with this sample turned out defective in 

that one completely peeled and the other partially peeled so 

that no good microprobe results could be obtained. The only 

other malfunction is the sample G. Upon switching the glass, 

it peeled off of the stainless steel substrates. The surfaces 

must not have been clean enough in order for this to have 

occurred. There is a difference between the amorphous 

composition and the crystalline but almost all of them are 

within the region of overlap when the microprobe error is in­

cluded. The crystalline compositions will be used to denote 

the sample composition when reference is made to it. The 

compositions are plotted in Figure 13. 

The resistivities are listed in Table 2. These values . 

are in agreement with those reported by Hilton et al. (11). 

4 7 
The resistivity ratio varied from 2 x 10 to 1 x 10 . 

The secondary electron emission characteristics were 

determined with the secondary electron emission analyzer oper­

ating under the following typical conditions: 
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Figure 13. Diagram of the samples analyzed 
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Table 2. Sample composition and resistivity 

Sample Sample State Composition Resistivity Sample Number 
State 

%Ge %As %Te 0-cm 

A 100 Amor. 4 41.6 54.4 2 X 10^ 

101 Crystal. 4.1 47.3 48.6 1 X 10~^ 

B 110 Amor. 7.4 60.4 32.2 1 X 10^ 

111 Amor, 7 61.3 31.7 

112 Amor. 6 64.4 29.6 

113 Amor. 7.8 60.9 31.3 

115 Crystal. - - - 1 X lO'l 

C 120 Amor. 17 21.9 61.1 2 X 10^ 

121 Crystal. 14.6 27.3 58.1 4 X 10"2 

D 130 Amor. 12.9 23.6 63.5 4 X 10^ 

131 Crystal. 15.3 21.7 63 4 X 10~^ 

E 140 Amor. 16.5 41-3 42.2 3 X 10^ 

141 Crystal. 17.9 40.2 41.9 3 X 10"2 

F 150 Amor. 12.8 39.6 47.6 5 X 10^ 

151 Crystal. 15.4 37.8 46.8 9 X 10"2 

G 160 Amor. 0.5 65.1 34.4 4 X 10^ 

H 170 Amor. 5.3 72.7 22 4 X 10^ 

171 Crystal. 6.9 67.2 25.9 1 X 10"^ 

I 180 Amor. 0.8 35.8 63.4 4 X 10^ 

181 Crystal. 0.8 36.1 63.1 5 X 10~^ 

J 190 Amor. 5.6 37.8 56.6 1 X 10^ 

191 Crystal 3.6 42.1 54.3 2 X lO"^ 
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-12 1. probe beam current of 250 x 10 A 

2. probe beam pulse rate of 150 kHz 

3. probe beam amplitude modulation of 1 kHz 

4. probe beam sweep rate of 5-20 Hz 

- 6  5. vacuum less than 8x10 Torr with both guns 
operating. 

The secondary electron emission curves are shown in Figures 14 

through 23 and these curves are summarized in Table 3. Note 

that even though the peak values for some amorphous and 

crystalline samples are the same, the curves are not. In all 

cases the two stainless steel samples were well within a few 

percent of one another and consequently, only one curve is 

plotted-

Figure 24 shows the microprobe output for crystalline 

sample C. The surface is highly ordered but the distribution 

of As, Te, and Ge is completedly random. The Te x-ray output 

is not shown but is identical to those shown for As and Ge. 

Figures 24 through 46 show the surface structure for the amor­

phous and crystalline states of the samples tested. These 

pictures were taken with a scanning electron microscope. Those 

prepared on both the glass and the stainless steel substrates 

were analyzed since the microprobe analysis was performed on 

the glass and the secondary electron emission was performed on 

the stainless steel ones. The pictures were selected in that 

they depicted a typical view of the surface. 
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Table 3. Secondary yield parameter of quartz and chalcogenide 
glasses 

Sample 6 max Bp max(V) \ (V)S 
Quartz (clean) 4.95 400 25 4600 

Quartz (dirty) 3.45 400 40 2600 

A Amor. 3.62 375 25 4000 

Crystal. 3.62 375 25 4000 

B Amor. 3.20 350 20 3000 

Crystal. 3.52 350 20 4500 

C Amor. 3.30 350 20 3200 

Crystal. 3.72 350 20 3800 

D Amor. 3.40 350 30 3400 

Crystal. 3.40 350 30 3400 

E Amor. 2.68 350 20 2600 

Crystal. 3-25 300 20 3200 

F Amor. 3.50 350 20 3300 

Crystal. 3.77 350 20 3400 

G Amor. 2.57 400 30 3500 

H Amor. 2.85 350 25 3000 

Crystal. 2.95 350 25 3500 

I Amor. 2.92 350 25 3500 

Crystal. 3.25 400 25 4400 

J Amor. 2.82 350 40 3250 

Crystal. 2.97 350 40 4600 

(V) and (V) are first and second crossover 

respectively. 



www.manaraa.com

4 

Sample A 

Amorphous — O 
Crystalline — ̂  

3 

6 

2 

1 

0 0.5 1.0 1.5 2 . 0  2.5 3.0 3.5 4.0 4.5 5.0 

Ep (keV) 

Figure 14. Secondary yield of amorphous and crystalline Ge^ i^®47 3*^^48 6 
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Figure 15. Secondary yield of amorphous and crystalline Ge^ i^®61 g^^Sl 1 
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Figure 16. Secondary yield of amorphous and crystalline 6^®27 3^^58.1 
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Figure 17. Secondary yield of amorphous and crystalline 3^®21 7*^® 
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Figure 18. Secondary yield of amorphous and crystalline Ge^^ 9^®40 2^®41 9 
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Figure 19. Secondary yield of amorphous and crystalline Ge^^ ^As^^ gTe^^ g 
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Figure 20. Secondary yield of amorphous Gê  ̂ Aŝ  ̂1*̂ 3̂4 4 
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Figure 21. Secondary yield of amorphous and crystalline Gê  gAŝ  ̂2̂ ®25 9 
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Figure 22. Secondary yield of amorphous and crystalline Gê  iTê  ̂  ̂U«O J # JL () J # J. 
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Figure 23. Secondary yield of amorphous and crystalline Ge. ̂ As.. Te_. 
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Figure 24. Microprobe data for crystalline sample C, 
®®14.6̂ ®27.3̂ ®58.1 

a. Germanium scanned x-ray output̂ (834x) 

b. Arsenic scanned x-ray output (834x) 

c. Optical photograph of surface topology 
(834x) 
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Figure 25. SEM photograph of sample A, amorphous 
604 1AS47 gTê g g on a glass substrate 
(lOOOx at 0° tilt) 

Figure 26. SEM photograph of sample A, amorphous 
Gê  ̂ Aŝ  ̂3̂ ®48 6 9% & stainless steel 
substrate (3000x at 45° tilt) 
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Figure 27. SEM photograph of sample A, crystalline 
Gê  1̂ 4̂7 3*̂ 4̂8 6  ̂glass substrate 
(lOOOx at 0° tilt) 

Figure 28. SEM photograph of sample A, crystalline 
Gê  1̂ 4̂7 3*̂ 4̂8 6  ̂stainless steel 
substrate (3000x at 45° tilt) 
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Figure 29. SEM photograph of sample B, amorphous 
Gê  8̂ 3̂1 1 & stainless steel 

substrate (3000x at 45° tilt) 

Figure 30. SEM photograph of sample B, crystalline 
Gê  1-̂ 6̂1 8̂ ®31 1 on a stainless steel 
substrate (3000x at 45° tilt) 
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Figure 31. SEM photograph of sample C, amorphous 
®̂14.6̂ ®27 3̂ ®58 i a glass substrate 
(lOOOx at 0° tilt) 

Figure 32. SEM photograph of sample Q, amorphous 
®̂14 6̂ 2̂7 3̂ ®58 i a stainless steel 
substrate (3000x at 45° tilt) 
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Figure 33. SEM photograph of sample C, crystalline 
Gei4 gASĝ  3̂ ®58 i a glass substrate 
(lOOOx at 0° tilt) 

Figure 34. SEM photograph of sample C, crystalline 
Gei4 gAs27 gTê g  ̂on a stainless steel 

substrate (lOOOx at 45° tilt) 
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Figure 35. 

Figure 36-

SEM photograph of sample D, crystalline 
Gê g 3̂ 2̂1 7*̂ 6̂3  ̂glass substrate 
(lOOOx at 45° tilt) 

SEM photograph of sample D, crystalline 
Gê g 3̂ 2̂1 7*̂ 6̂3  ̂stainless steel substrate 
(lOOOx at 45° tilt) 
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Figure 37. SEM photograph of sample E, amorphous 
Gê y gAŝ o 2̂ ®41 9 0% & glass substrate 
(lOOOx at 45° tilt) 

Figure 38. SEM photograph of sample E, amorphous 
Gê y gAŝ Q 2̂ ®41 9 on a stainless steel 
substrate (300Ox at 45® tilt) 
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Figure 39. SEM photograph of sample E, crystalline 
*̂ 1̂7.9̂ 4̂0 2*̂ 4̂1 9 on a glass substrate 
(lOOOx at 45* tilt) 

Figure 40. SEM photograph of sample E, crystalline 
Gê  ̂gAŝ Q 2̂ ®41 9 on a stainless steel 
substrate (lOOOx at 45° tilt) 
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Figure 41. SEM photograph of sample F, crystalline 
®̂15.4̂ 3̂7.8*̂ 4̂6 8  ̂glass substrate 
(lOOOx at 45° tilt) 

Figure 42. SEM photograph of sample F, crystalline 
Gê g 4-̂ 3̂7 8̂ ®46 g a stainless steel 
substrate (lOOx at 45° tilt) 
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Figure 43. SEM photograph of sample H, crystalline 
Geg gASgy 2̂ ®25 9  ̂stainless steel 
substrate (SOOOx at 45° tilt) 

Figure 44. SEM photograph of sample I, crystalline 
Gê  gASgg î ®63 1 on a stainless steel 
substrate (SOOOx at 0° tilt) 
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Figure 45. SEM photograph of sample I, amorphous 
Geg gASgg î ®63 1 & glass substrate and 

sample J, amorphous Gê  gAŝ g î ®54 3 on a 

glass substrate (lOOOx at 45° tilt) 

Figure 46. SEM photograph of sample J, crystalline 
Ge, fAs,- .Tec. ̂  on a stainless steel 

3.0 42.1 54.3 
substrate (3000x at 0° tilt) 
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IV. DISCUSSION 

A. Application to Memory Systems 

One envisioned computer memory (random access high den­

sity large capacity) might be fabricated according to the 

following guide lines. A support plate could be fabricated 

from a nonreactive nonvolatile metallic conductor as shown in 

Figure 47. On this surface would be deposited a 1.5 micron 

layer of a good dielectric. Fused quartz of 100% silicon 
19 

dioxide has a dc volume resistivity at 25°C of >10 ohm-cm. 

Holes with a diameter of 4 microns on 6 micron centers would 

be made in the dielectric to a depth of 1.5 microns. This 

could be accomplished by using photoresist, masks and either 

chemical or sputter etching techniques. These holes could 

also be made by using a high energy electron beam or a laser. 

Next, there would be a 1 micron deposition of the thres­

hold type switching material. On top of this would be 

deposited a thin layer of metal and finally a .5 micron layer 

of memory material. The metal layer would act as a buffer to 

slow ion migration between the threshold material and the 

memory material. Finally, the whole surface would be coated 

with a thin metal electrode. 

This memory would require the stacking of material inside 

of the memory cell for two reasons. First, the memory material 

would require at least 2 A current in order to be switched. 
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Space charge repulsion effects would prevent this current from 

arriving via an electron beam. Hence, electrodes must be em­

ployed in order to deliver this power to the memory cell. But 

if a cell is already in a conducting state, then it would be a 

low resistive path between the two electrodes. 

For a 1 in. X 1 in. memory structure the number of memory 

cells would be 1.8 x 10̂ . A memory cell in the amorphous state 

would have a resistance 

R„ = -̂  = 1.1 X 10̂  0-cm 4.4 x 10̂ 0. 
 ̂  ̂ 3.14(2x10"*)̂ cm-

While, for the crystalline state it would be 

= .98 fl-cm 5x10 cm 
 ̂ 3.14(1x10"*) cm̂  

1.1x10̂  0-cm 5x10 cm 
3.14(2̂ -l̂ )xl0 ®cm̂  

The second term can be neglected because it is much smaller 

than the first term and the resistance would be = 155 9.. 

The resistivity values are from Uttecht et al. (29). 

For the worst possible case with all the cells in the 

low state and for no threshold material in the cell, the 

current drain would be approximately T.SxlÔ  A/sq. in. 

of memory1 Hence, the threshold material would be needed. 

From Hilton et al. (11) the resistivity of Gê QAS2gTê Q is 

2.8x10̂  0-cm at 300°K. The resistance of this section would be 
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-4 
R = 2.8x10̂  0-cm —  ̂=- = 2.23 x 10̂  Q, 
 ̂ 3.14(2x10" cm)̂  

while for Gê gAŝ T̂ê g ,  p = 2x10̂  O-cm and 

-4 
R' = 2x10̂  fi-cm —  ̂=- = 1.59x10̂ ° 
 ̂ 3.14(2x10 cm)̂  

For the worst case the new equivalent resistances would be 

Rg = Rr + R̂  = 4.62 x 10 5 

and 

R£ = R̂ +R̂  = 2.23 X 10^ 0. 

The worst possible case would be when the cell is in state 

R̂  which gives a current drain of approximately 6.1 A/sq. 

in. If the leakage through the dielectric is considered then 

the dielectric resistance would be 

PL _ ,-19 o (1.5xlO"4 cm) Rĵ  = — = 10 0-cm 
 ̂ (2.54) ̂-TT (2x10 '̂ ) ̂l.SxlÔ cm̂  

= 3.57x10̂ 4 

—14 This would produce a current of only 2.1x10 amps and could 

be neglected. 

The current computations were based upon the fact that 

the electric field must be at least 5x10̂  V/cm from Kao (12) 

in order for switching to occur. For the 1.5 micron thickness 

the voltage required is 7.5 volts. The power supply require­

ment is thus established and is auite practical. 
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The electron beam would be used to switch the cell from 

the R£ state to the state by heating and without the 

presence of the critical field. The electron beam would re­

quire approximately 25 keV in order to penetrate the whole 

memory cell. This is based upon using the empirical rela­

tionship for the penetration depth (R) from Kaplan (13) 

1.265-0.0954 In T̂  
R = 412 Tq 

2 where R is in mg/cm and T̂  is the electron energy in meV. 

This equation is valid for aluminum and dictates that the 

penetration depth of a 25 keV electron is approximately 4 

microns. Since the glasses are of greater density then Al, 

this incident energy would be adequate to penetrate the 1.5 

micron depth of the memory cell. 

The energy input needed to heat the cell to above the 

glass transition temperature needs to be found. The volume 

-11 3 of a memory cell would be 1.88x10 cm . The specific heat 

per unit volume is 4.5 from Hilton et al. (11) and Warren 
cm"̂  °K 

—11 (30). The energy input needed would be 8.45x10 joules/®K. 

The total energy required would be dependent upon the mech­

anism of filament growth since the filament growth places a 

restriction upon the ambient temperature. 

Warren and Male (31) have shown that as the temperature 

is increased the critical field required for switching de­

creases. For the 4 micron diameter memory cell the relative 
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critical field curve that corresponds to this will be midway 

between two of their curves. The electric field difference 

for the memory cell between 350®K and 220°K is a factor of 5. 

Hence, filament growth can occur in the memory cell if the 

field supplied by the electrodes is less than the critical 

field and if upon heating up of the cell by an electron beam 

the applied field exceeds the critical field. 

After the filament has been grown, the applied field 

would be turned off and the threshold material would return to 

the amorphous state. Upon reapplying the field, no switching 

would occur because the temperature would have returned to 

ambient and the field would still be less than the critical 

field of the threshold material, even though, most of the 

voltage drop would be across the threshold material. 

If the material needed to be heated to 350°C then the 

energy input requirement would be [8.45x10 joules/°K] * 

(330°K) = 2.79x10 ̂  joules. To get some feel for the kind 

of electron beam and the time required to produce this amount 

- 8  of heating, assume that 25 keV electrons at 10 amperes are 

to be used. The energy in a 25 keV electron is 4x10 joules. 

Assume that 10% (this is a very pessimistic value and 50% is 

more realistic) of the electrons energy is utilized for heat-

7 ing then it would be found that 6.95x10 electrons would be 

needed to accomplish this heating. A beam current of 10 ̂  A 

would require about 110x10 ® seconds to deliver this number 
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of electrons- This time could be decreased by preheating 

the substrate so that the ambient temperature is 250°C. This 

would be reflected as a 36x10  ̂second switching time. 

There would be no trouble with the state determination 

by secondary electron emission, as long as, the top electrode 

remained thin. A thick electrode would obscure the secondary 

electron information by blocking their transmission to the 

secondary electron monitor. If an electron beam of 1 keV 

is used, then the electron velocity would be 1.88x10̂  m/sec. 

The transit time for an electron of this energy would be 

1.62x10 ̂  sec/feet. This would not govern the rate at which 

this memory could be interrogated but the transit time of the 

secondary electrons would, because they are of very low energy. 

_7 The velocity of a 5 eV electron is 2.27x10 sec/feet. It 

would be imperative to locate the secondary electron monitor 

as close as possible to the memory. In fact, this memory 

could be surrounded by one continuous or several secondary 

electron monitors. This would minimize the distance traversed 

and would provide a larger output signal. 

Otherwise, the transmitted electrons would be analyzed 

and many of these problems eliminated. The transit time for 

secondaries would be eliminated as an example. There would 

have to be some analysis done on the effect of stacking two 

memory materials on the transmitted electron current. 

If the memory were to be used only for archival storage 
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applications, then the fabrication would be drastically 

changed. Chen and Wang (5) have discussed this application 

in some detail and presented some data on the limitations of 

this system. The work is a result of a computer program 

study of the heating dynamics in chalcogenide glasses and 

the limitations of electron beam optics. The reasons that 

this application is so appealing is that this memory would 

have high density, electronic access speed, NDRO, non-

volatility, permanency, and radiation resistance. This 

memory also would have the advantage that no cell demarca­

tion during fabrication would be needed. Hence, construction 

costs would be greatly reduced. The material would be switched 

by utilizing the thermodynamic characteristics of the glasses. 

Again, readout would be accomplished via secondary electron 

emission. 

B. Results and Experimental 
Methods 

The glass deposition techniques affect the composition of 

the samples as shown by Robertson and Owen (22) . For the 

ASgTê +Si system with the atomic percent of silicon being 40, 
g 

the bulk resistivity was 10 0-m, the resistivity of a sample 

prepared by the powder flash evaporation from a hot Mo fila­

ment was 10̂  0-m, the resistivity of a sample by the electron 

beam evaporation from a melt was 2x10̂  0-m, and the resistivity 

of a sample prepared by the glass enclosed in a resistance-
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4 heated Mo boat was 2x10 H-m. Sample preparation is extremely 

important and the difference in the vapor pressures of the 

elements during deposition, obviously, leads to composition 

variation. In order to avoid this problem, a sputtering 

technique should be employed. In fact, a sputtering method 

would be the best way to make large uniform samples. The 

resistivities reported in Table 2 for the samples investi­

gated are in agreement with Hilton et al. (11). 

The two electron gun technique employed in making these 

measurements can be criticized because it does conduct the 

measurements in a forced steady state manner. The surface of 

the target for measuring semiconductors is clamped at a nega­

tive potential. This causes a current to flow through the 

material. This current and the electric field due to the 

surface potential may drastically affect the secondary electron 

emission processes. The secondary electrons have to escape 

through the surface barrier. The increased barrier due to the 

flood gun may prevent some of the low energy secondary elec­

trons from escaping. This effect will be minimized if the 

surface potential due to the flood gun is kept small. Of course, 

the pulsing techniques have their problems because the incident 

electrons have a varying potential and the escaping secondaries 

also see a varying surface potential. The first crossover for 

all of these glasses is in the range of 20 V to 40 V. This is 

in agreement with the results presented by Ooka, Dunn, and 
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Mackenzie (20) . Hence, the surface potential has to be less 

than this and was, in fact, kept at -10 volts. 

The secondary yield did not change in all cases as shown 

in Table 3. The for the crystalline state was always 

equal to or greater than that for the amorphous state. This 

is in agreement with Makedonskii and Pustovoit (17) but dis­

agrees with Chen et al. (5). In order to resolve this dis­

crepancy, the process of secondary electron emission must be 

investigated. 

Dekker (6) has developed an elementary theory of secondary 

electron emission that explains its basic features. The 

process can be broken down into two parts; the generation of 

secondaries and their subsequent escape. The production of 

secondaries is a function of the primary electron character­

istics (energy, angle of incidence) and the type of material 

(composition, ordering and band-gap). The escape probability 

is a function of the secondaries and the properties of the 

media. For metals the theoretical description stands on firm 

ground. However, for insulators the theoretical treatment is 

inadequate because secondary production involves the excitation 

of electrons in the filled band and an accurate representation 

of the wave function for these valence band electrons has not 

yet been developed. If the wave functions for highly ordered 

dielectrics have not been developed, then the wave description 

of amorphous and polycrystalline materials obviously has not 
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either. Qualitatively, however, the nature of secondary emis­

sion for both metals and insulators may be explained rather well. 

Metals, generally, have low yield values between 1.0 and 

1.5 for 0̂ ^̂ . Their yields should be high because of fairly 

large atoms, loosely bound outer electrons and relatively low 

ionization potentials. The generation of "free" electrons 

requires very little energy because the valence and conduction 

bands overlap. The low 6 must then be a result of low escape 

probability. Due to band overlap, secondaries are able to 

interact with free electrons which results in a relatively 

high average energy loss suffered by the secondaries. Thus, 

metals are characterized by small escape depths. 

Insulators, commonly, are compounds which have typically 

very high bond strengths and ionization potentials. Electrons 

are much more tightly bound in an insulator than in a metal, 

hence, the generation of secondaries is lower. Free electrons 

are hard to create because of the band gap. 

The fact that insulators have a higher yield than metals 

must be on account of a higher escape probability. In in­

sulators secondaries do not interact with lattice electrons 

(a high energy loss mechanism) because the band gap energy is 

greater than the average energy of a secondary. Therefore, 

the primary energy loss mechanism is with phonons or lattice 

vibrations (a low energy loss mechanism). Thus, insulators 

with low surface barriers are characterized by large escape 
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depths. 

The amorphous state can be visualized as having a contin­

uous distribution of states through the forbidden band between 

the conduction band and the valence band. Hence, the proper­

ties will be somewhat of a compromise between those of the 

metal and the insulator because of relatively large atoms, 

some loosely bound electrons and a competition between high 

and low energy loss mechanisms. Also, surface barrier energy 

(electron affinity) and surface roughness must be considered. 

Therefore, the yield will be dependent upon which of the above 

mechanisms dominate. 

The polycrystalline state will have a surface that is 

formed via the union of crystallites. The implication of this 

is that the surface will be, in general, rougher than the 

amorphous state. The scanning electron microscope pictures 

of the samples studied verify this. Surface roughness is 

discussed by Bruining (3) and Ooka et al. (20) and as the 

surface gets rougher the yield decreases. 

Consequently, a priori knowledge of secondary yields of 

amorphous and polycrystalline material is not known. Use of 

a random interaction probability with a density of states dis­

tribution that is uniform across the band gap might yield some 

insight. At present the results are not predictable based on 

any qualitative analysis so far developed, except that the 

results of this work show that the yield of the crystalline 
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state is equal to or greater than the amorphous state. 

The results of Tables 2 and 3 were cross correlated for 

any trends. No interrelationships appeared and upon plotting 

this data (5̂ ^̂  versus E the points were comparable but max pmax 

slightly higher than those reported by other investigators for 

glasses. Barut (1) has compiled this data and the range is 

from 2 to 3.5 for and from 300 to 450 volts for E max pmax 

The samples investigated in this work ranged from 2.57 to 

4.95 for and from 300 to 450 volts for 

The microprobe results verified the uniform distribution 

of the elements in the samples. This is to be contrasted with 

the results for the bulk samples that lie near the border of 

the glassy region. Sample E was prepared with the formula 

ASggTê gGegQ. This material lies on the border to the glassy 

region. The sample was cooled in air and a chunk of it was 

analyzed by microprobe. Figure 48 shows the surface topology 

and Figure 49 shows the microprobe x-ray output scan for As, 

Te, and Ge. Compare this with Figure 24 that is for the 

evaporated samples and for water quenched border samples and 

for air quenched central glassy region samples. To avoid 

the phase separation in Figure 49, water quenching should be 

used. 

In general, the surfaces of crystalline samples were far 

rougher than the amorphous samples. Some amorphous samples 

appeared to be as rough as the crystalline state for another 
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Figure 48. Surface topology of bulk sample E that was air 
quenched (834X) 
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Figure 49. Microprobe data for bulk sample E that was air 
quenched 

a. Arsenic scanned x-ray output (834X) 

b. Tellurium scanned x-ray output (834X) 

c. Germanium scanned x-ray output (834X) 
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sample. The visual inspection of the samples surface along 

with the resistivity of the samples provided adequate 

verification of the state of each sample. X-ray diffraction 

analysis was not performed because polycrystalline diffrac­

tion patterns provide very little useful information. 

The tilting of the samples from 0° to 45° added con-: 

siderable contrast. Figure 25 shows the affect of scanning 

the surface at a higher magnification. The amorphous state 

of sample B on a glass substrate looked identical to that of 

sample A. The crystalline state of sample B was by far the 

roughest of all the samples. Adhesion to the glass substrate 

would be affected by this structural effect and explains, per­

haps, why the glass substrate samples peeled for this composi­

tion . 

Sample C's amorphous state exhibited the greatest dif­

ference between the glass substrate and the stainless steel 

substrate. In all other cases the two surfaces were practical­

ly identical and, hence, many of these pictures have not been 

included. 

Makedonskii and Pustovoit (17) have found that the 

secondary yield will be large for materials where x/Â  is 

small. X is the electron affinity and is the energy required 

to transfer an electron from the bottom of the conduction band 

to vacuum. AE is the band gap energy. They reported 

X/AE > 2 for SbgSg and Sb̂ Sê  and found to be for the 
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amorphous samples 1.10-1.35 and 1.2-1.4, respectively. How­

ever, single crystal NaCl had a of 14.5 and x/AE < 1. 

If x/AE were known, then perhaps the relatively good yield of 

the chalcogenide glass samples investigated could be explained. 

Boer (2) has worked with a model to explain the conduc­

tivity characteristics of disordered semiconductors. In 

homogenous glasses there are no crystallite boundaries, but 

the high density of localized defects allows for large po­

tential perturbations, which act similar to those boundaries 

between microcrystallites. Hence, the amorphous and poly-

crystalline states can be quite similar. The production of a 

free electron in the case of glasses is at an energy greater 

than the potential perturbations, otherwise, the electron is 

still trapped and does not add to the conductivity. In the 

polycrystalline case it is at an energy greater than the 

potential barrier between microcrystallites. The point here 

is that for this model of disordered semiconductors x and AE 

are approximately equal and the ratio x/AE = 1. This implies 

a high yield because secondaries have a high escape probability. 

In both cases many secondaries are generated as in a metal but 

end up being retrapped due to having an energy insufficient to 

overcome the surface barrier. 

The reason why. the emission is greater for polycrystalline 

phases than the amorphous phases can be explained if the struc­

ture of each is analyzed in greater detail. In the amorphous 
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state the potential perturbations due to the high density of 

localized defects is not a constant but is somehow distributed. 

Consequently, a secondary in one locality may be trapped in 

another- According to Boer (2), the mean free path length of 

a conduction electron in an amorphous material is on the order 

of 100 angstroms. The polycrystalline structure is ordered 

over a much larger spatial dimension and this means that the 

conduction electron's mean free path length is greater. Hence, 

the escape probability is greater for the polycrystalline 

phase. 

In summary then, the generation of secondaries is greater 

for the amorphous state because of the large number of loosely 

bound electrons, the escape to the surface is greater for the 

polycrystalline state because of its band gap, and the escape 

from the surface is greater for the amorphous state because of 

its smoothness. 

The increased escape depth may cancel the effects of 

decreased generation and increased surface roughness producing 

the results of samples A, D and G. Or the escape depth may 

dominate as in the remainder of the samples reported. The 

results of Chen and Wang (4) may be explained by the reverse 

occurring in that the escape depth change is minimal-

It is interesting to note that the threshold voltage 

versus film thickness as reported by Stocker, Barlow and 

Weirauch (28) varies from 25 volts to 40 volts when film 
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thickness varies from 0.5 microns to 3 microns. The first 

crossover voltage also varied for these samples from 20 

volts to 40 volts as shown in Table 3. 

Future research should be pursued in the area of further 

evaluation of sample composition's durability, reliability and 

stability. The peeling problem of some of the samples may 

not be a problem for memories that are fabricated after the 

work of Chen and Wang (4). 

The research into negative electron affinity (NEA) 

devices is summarized by Williams and Tietjen (33) and has 

so far been limited in applications to photomultipliers and 

photocathodes. The appealing aspect of NEA devices is that 

Omax ~ 950 for 20 keV electrons on silicon coated with cesium 

oxide. Perhaps, NEA devices could be fashioned from chalco-

genide glasses and provide a much larger change in the 

secondary emission characteristics for the two phases. 



www.manaraa.com

98 

V. CONCLUSIONS 

The application of these glasses to the electron beam mem­

ory field is dependent upon the ability to sense the state of 

the glass. It was the intent of this thesis to determine if 

amorphous glass materials have a sufficiently large change in 6 

to allow sensing in this way and to demonstrate an application 

to computer memories. The results clearly show a large change 

in the secondary emission characteristics sufficient for com­

puter applications for some of the compositions when they are 

switched from one phase to another. The polycrystalline state 

m̂ax always equal to or greater than that for the amorphous 

state for the specified compositions. The crystalline state had 

a rougher surface than the amorphous state. The high secondary 

yields implied that the electron affinity and the band gap 

energy are approximately equal in value. No trends developed 

as to the means whereby the secondary yields could be predicted 

as a function of first crossover, second crossover, resistivity, 

resistivity ratio, or atomic composition. This also applied 

to the first and second crossovers in that they could not be 

predicted either. 

If the "true" secondary electrons were to be used in order 

to determine the state of a memory cell, then the data pre­

sented would not be applicable. The backscattered component 

would have too high an energy to be picked up by the normal 

secondary electron analyzers. Normal analyzers have an energy 
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cutoff of 10 to 50 volts and they would interfere with the elec­

tron beam deflection system. However, if the transmitted cur­

rent is to be analyzed, then this data is pertinent. In parti­

cular, the sensing of a small memory cell must occur at a rela­

tively high voltage or else the electron beam can not be prop­

erly focused. A voltage of 4,000 to 5,000 volts must be used 

for good electron beam characteristics. Samples B, H, I and J 

are clearly adequate in this voltage range. They have a dif­

ference of 1000 to 1600 volts between their second crossovers 

for the two phases. If, for example, the incident electrons 

were at 4000 volts, then the sensing of the transmitted cur­

rent need only be done as to the direction. If the state were 

amorphous, then 6 < 1 and the current direction is negative. 

If the state were polycrystalline, then o > 1 and the current 

direction is positive. The electron beam could be scanned 

across the memory element and a positive pulse of current 

would indicate a polycrystalline state and no change would in­

dicate amorphous. These compositions with a large change in 

are near the glassy region boundary and are almost in a 

line at a small germanium content of 4 to 8 atomic percent. 

Sample B had the highest order. Figure 30, and the switched 

samples peeled off of the glass substrates. Sample G being near 

B in composition also had peeling trouble on the glass, as well 

as, the stainless steel substrates. The implication here is 

that G may also be a highly ordered state that leads to large 

crystallites and poor adhesion. 
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